
1/13

A Beginner’s Tutorial on ESP32 Bluetooth | Learn
ESP32 Classic Bluetooth

electronicshub.org/esp32-bluetooth-tutorial

In this tutorial, we will learn about the Bluetooth feature of ESP32. ESP32 supports both

the Classic Bluetooth v4.2 as well as the Bluetooth Low Energy (BLE) standards. Let us

focus on the Classic Bluetooth in this ESP32 Bluetooth Tutorial. We will learn a little bit

about architecture of Bluetooth in ESP32, how to configure, setup and start Bluetooth

communication and also a couple of simple projects involving data transfer between

ESP32 and a smart phone over Bluetooth Communication.

A Brief Note of ESP32 Bluetooth

Bluetooth is a great wireless communication technology that has been popular for quite

few years. Operating in the unlicensed 2.4 GHz ISM (Industrial, Scientific and Medical)

frequency band, Bluetooth is a short-range wireless communication technology with

range up to 100 m.

ESP32 SoC integrates both the Bluetooth Link Controller (or Link Manager) and the

Baseband into its silicon. Physically, only an external antenna is needed for proper

Bluetooth Communication.

Since both Wi-Fi and Bluetooth operate at the same 2.4 GHz ISM frequency, the Wi-Fi

Radio and the Bluetooth Radio share the same antenna in ESP32. If you take a look at the

pinout of ESP32 SoC, there is only one pin for connecting to antenna (LNA_IN).

https://www.electronicshub.org/esp32-bluetooth-tutorial/
https://www.electronicshub.org/esp32-ble-tutorial/
https://www.electronicshub.org/wp-content/uploads/2021/03/ESP32-Bluetooth-Pairing.jpg

2/13

ESP32 supports both the Classic Bluetooth (Classic BT) and Bluetooth Low Energy (BLE)

which can be configured with BLUEDROID Bluetooth Stack. ESP32 Bluetooth supports

three types of Host Controller Interface (HCI): UART, SPI and VHCI (Virtual HCI)

interfaces (only one can used at a time and UART is the default).

Getting Started with ESP32 Classic Bluetooth

The Classic Bluetooth also known as Bluetooth Base Rate / Enhanced Data Rate, is the

original point-to-point network topology designed for one-to-one wireless communication

between a master and a slave. Even though multiple slave devices can be connected to a

single master, only one slave can be actively communicating with the master. Our

Bluetooth keyboards and mouse work with Classic Bluetooth technology. Another simple

example is file transfer between two devices (like two mobile phone or a laptop and a

mobile phone) over Bluetooth is based on Classic Bluetooth functionality.

BLE or Bluetooth Low Energy on the other hand, as the name suggests, is designed for

low power operation and developed with IoT applications as the main target. Bluetooth

Specification 4.0 added BLE functionality and is mainly used in battery operated devices

like watches, audio devices, health trackers, fitness monitors and data beacons.

Let us make another tutorial on ESP32 BLE and focus on ESP32 Classic Bluetooth for

now.

The BLUEDROID Bluetooth Stack communicates with Bluetooth Controller over VHCI

(Virtual Host Controller Interface) and at the same time provides APIs for user

application.

Bluetooth Profiles determine the functions of each layer of the Bluetooth from PHY to

L2CAP while the Bluetooth Protocols define message formats and procedures for data

transport, link control etc.

The following is a list of Classic Bluetooth Profiles and Protocols supported by

BLUEDROID Bluetooth Stack of ESP32.

Classic Bluetooth Profiles

GAP

A2DP (SNK)

AVRCP (CT)

Classic Bluetooth Protocols

L2CAP

SDP

AVDTP

AVCTP

https://www.electronicshub.org/basics-uart-communication/

3/13

The communication between ESP32’s Processor and Bluetooth Controller is based on

Serial Interface. Let us explore more about ESP32 Bluetooth by using the ‘BluetoothSerial’

library for Classic Bluetooth.

ESP32 Classic Bluetooth Serial Communication

If you ever worked with Arduino and any Bluetooth device like HC-05, then you might

remember that Arduino UNO and HC-05 communicate over Serial Communication.

ESP32, which already has a Bluetooth Controller, also has a similar communication

between the main Xtensa Processor and the Bluetooth Controller.

What this means is that after receiving data from a Bluetooth device wirelessly, the

Bluetooth controller in ESP32 transfers this data to ESP32’s Processor over serial

communication. Similarly, in order to send data over Bluetooth, the Processor of ESP32

transmits data to the Bluetooth Controller using the serial interface.

We will use this information along with a dedicated ‘BluetoothSerial’ library to transmit

and receive data.

The BluetoothSerial library works similar to the Serial library but it is just within ESP32.

Some of the frequently used functions offered by BluetoothSerial library are:

begin()

available()

write()

read()

Let us write a simple code which transfers data between ESP32 and a Mobile Phone. To

view the received data of ESP32, we will print the data on the serial port. Coming to the

mobile phone, in order to send and receive data over Bluetooth, we have to use an

application.

I tried many Bluetooth Serial Applications for Android but finally went with “Serial

Bluetooth Terminal” by Kai Morich. You can download it from this link (or from Play

Store).

Code

First, let us see the code and in the process, we can understand the working. The code is

very simple. Create an object of class ‘BluetoothSerial’ and begin the communication

using ‘begin()’ function.

You can pass the name of the ESP32 Bluetooth Device as an argument to the ‘begin()’

function. If you leave it blank, then the default name i.e., ESP32 is used. Also initialize the

normal serial communication with baud rate of 115200.

Then, in the loop function, read data from BluetoothSerial and print it on the Serial

Monitor and read data from the Serial Monitor and write it to BluetoothSerial.

4/13

When we write data to BluetoothSerial, the Bluetooth Terminal App on the phone receives

the data and prints it on the app. When you type data in the app and send it over

Bluetooth, the BluetoothSerial will read this data and is printed on Serial Monitor.

#include "BluetoothSerial.h"

/* Check if Bluetooth configurations are enabled in the SDK */

/* If not, then you have to recompile the SDK */

#if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED)

#error Bluetooth is not enabled! Please run `make menuconfig` to and enable it

#endif

BluetoothSerial SerialBT;

void setup() {

Serial.begin(115200);

/* If no name is given, default 'ESP32' is applied */

/* If you want to give your own name to ESP32 Bluetooth device, then */

/* specify the name as an argument SerialBT.begin("myESP32Bluetooth"); */

SerialBT.begin();

Serial.println("Bluetooth Started! Ready to pair...");

}

void loop() {

if (Serial.available())

{

SerialBT.write(Serial.read());

}

if (SerialBT.available())

{

Serial.write(SerialBT.read());

}

5/13

delay(20);

}

view raw ESP32-Bluetooth-Classic-Serial.ino hosted with ❤ by GitHub

Uploading the Code and Testing

After uploading the code to ESP32, if you open the serial monitor of Arduino IDE, you can

see the ESP32 printing some information about Bluetooth. Also, it displays the ‘ready’

message.

Now, turn on Bluetooth in your smart phone and scan for Bluetooth devices. You should

see a list of ‘Paired devices’ and ‘Available devices’ and from the available devices, select

‘ESP32’.

Your mobile will ask if you want to pair with ‘ESP32’ and you select yes (or ok). There is

no password. Now, open the ‘Serial Bluetooth Terminal’ app on your phone and click on

the three horizontal bars on the top left corner of the screen.

https://gist.github.com/elktros/bb7b3bf4d59bbcab6f4c1f9558fd8721/raw/64121133bddc3e290b2db62de7454eb17d2b85f6/ESP32-Bluetooth-Classic-Serial.ino
https://gist.github.com/elktros/bb7b3bf4d59bbcab6f4c1f9558fd8721#file-esp32-bluetooth-classic-serial-ino
https://github.com/
https://www.electronicshub.org/wp-content/uploads/2021/03/ESP32-Bluetooth-Serial-Monitor-1.jpg

6/13

https://www.electronicshub.org/wp-content/uploads/2021/03/Pairing-Bluetooth-ESP32-2.jpg

7/13

Select ‘Devices’ tab and select ESP32 from the list.

https://www.electronicshub.org/wp-content/uploads/2021/03/Serial-Bluetooth-Terminal-ESP32-1.jpg
https://www.electronicshub.org/wp-content/uploads/2021/03/Serial-Bluetooth-Terminal-ESP32-2.jpg

8/13

Now, click on the ‘link’ icon on the top to connect to ESP32 Bluetooth Device. The app will

display the status as ‘Connecting to ESP32 …’ while making connection and if the

connection is successful, it will display ‘Connected’.

Below is a space for entering data to transfer over Bluetooth. Type something and click on

the send button. The sent data is echoed back on the app. This data is sent to ESP32 over

Bluetooth and is received by BluetoothSerial read() function.

Since we are passing this information to Serial port, you can see the data printed on the

serial monitor.

https://www.electronicshub.org/wp-content/uploads/2021/03/Serial-Bluetooth-Terminal-ESP32-3.jpg

9/13

https://www.electronicshub.org/wp-content/uploads/2021/03/Serial-Bluetooth-Terminal-ESP32-4.jpg
https://www.electronicshub.org/wp-content/uploads/2021/03/ESP32-Bluetooth-Serial-Monitor-2.jpg

10/13

Similarly, you can send data from ESP32 to Mobile Phone. Just type some data in the

serial monitor and click on send. This data is sent over Bluetooth to Mobile Phone

through the BluetoothSerial write() function.

The serial Bluetooth terminal app will read this data and prints it on the app.

Bluetooth Controlled LED using ESP32

Using the above application, we can modify the code slightly and implement a Bluetooth

Controlled LED using ESP32. The aim of this project is to see how easy it is to control

GPIO Pins of ESP32 by sending and interpreting the data from Bluetooth.

To keep things simple, let us transmit ‘1’ and ‘0’ from the Mobile Phone App using the

macro keys. I assigned ‘1’ for M1 and ‘0’ for M2. You can compare the received data with

characters ‘1’ and ‘0’ or their decimal equivalent in ASCII i.e., 49 and 48.

When ‘1’ is received, the LED connected to GPIO 2 will turn ON and if ‘0’ is received, the

LED is turned OFF.

Obviously, the LED is just a representation of the GPIO Pin being ON and OFF. You can

further improve this application into a Bluetooth Controlled Relay using ESP32.

https://www.electronicshub.org/wp-content/uploads/2021/03/ESP32-Bluetooth-Serial-Monitor-3.jpg
https://www.electronicshub.org/wp-content/uploads/2021/03/Serial-Bluetooth-Terminal-ESP32-5.jpg

11/13

Code

#include <BluetoothSerial.h>

#define ledPIN 2

BluetoothSerial SerialBT;

byte BTData;

/* Check if Bluetooth configurations are enabled in the SDK */

#if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED)

#error Bluetooth is not enabled! Please run `make menuconfig` to and enable it

#endif

void setup()

{

pinMode(ledPIN, OUTPUT);

Serial.begin(115200);

SerialBT.begin();

Serial.println("Bluetooth Started! Ready to pair...");

}

void loop()

{

if(SerialBT.available())

{

BTData = SerialBT.read();

Serial.write(BTData);

}

/* If received Character is 1, then turn ON the LED */

/* You can also compare the received data with decimal equivalent */

/* 48 for 0 and 49 for 1 */

12/13

/* if(BTData == 48) or if(BTData == 49) */

if(BTData == '1')

{

digitalWrite(ledPIN, HIGH);

}

/* If received Character is 0, then turn OFF the LED */

if(BTData == '0')

{

digitalWrite(ledPIN, LOW);

}

}

view raw Bluetooth-Controlled-LED-ESP32.ino hosted with ❤ by GitHub

Conclusion

A complete beginner’s guide on ESP32 Bluetooth Communication. You learned some

important basics of Bluetooth Communication in ESP32 SoC, how to setup Classic

Bluetooth in ESP32, transfer data from a smart phone to ESP32 using Bluetooth and an

extension project called Bluetooth Controlled LED using ESP32 (which can be easily

modified to control a Relay).

https://gist.github.com/elktros/7c61cdd4bcc4113e6f9cbc9f725c0b15/raw/39c23288d3ee08951b0b4f60bb704a6b7bb42e3b/Bluetooth-Controlled-LED-ESP32.ino
https://gist.github.com/elktros/7c61cdd4bcc4113e6f9cbc9f725c0b15#file-bluetooth-controlled-led-esp32-ino
https://github.com/
https://www.electronicshub.org/wp-content/uploads/2021/03/Bluetooth-Controlled-LED-ESP32.jpg

13/13

One Response

Leave a Reply

Your email address will not be published. Required fields are marked *

